Mapping the ice on Mars that could support future missions

Mapping the ice on Mars that could support future missions

Ars Technica·2021-02-10 10:01

Enlarge/ While we know of locations with ice on Mars, not all of them are in places we'd want to land.39 with 21 posters participatingOver the past couple decades, plans to go to Mars or return to the Moon for longer stays have gradually moved away from sci-fi tinged "what if" scenarios and shifted to something that resembles actual planning. And those plans invariably include extracting water from local ice deposits. This water would help support any astronauts during their stay, cutting down on the weight we'd have to shift out of Earth orbit. But it could also be a source of hydrogen that helps power the astronaut's return trip to Earth.That obviously means we want to land where the water is. On the Moon, this has meant focusing on the lunar poles, where deep craters create permanent shadows that can hold ice at temperatures where it's stable. On Mars, the situation is considerably more complicated. In response to some NASA pilot funding, a team of scientists set up the SWIM projectM, for Subsurface Water Ice Mapping on Mars, to analyze the data. The project has now published a progress report showing a lot of ice deposits in areas we might want to land.No poles, pleaseWhether or not water ice is stable on the Moon is determined entirely by sunlight exposure. As long as the Sun is never visible in a location, ice can survive. Mars is substantially more complicated, with an atmosphere that distributes heat and makes the temperature extremes far more moderate, plus orbital wobbles that ensure seasonal changes in temperature.Mars does have polar ice, but the number of these deposits changes with the seasons (and a lot of it is frozen carbon dioxide). Further from the poles, there's a region where temperatures would allow water ice to be stable, should it form there. But that region's still far from the equator, which means more extreme cold and less solar energy for any photovoltaic equipment we might bring with us. Ideally, it would be nice to find some ice in temperate regions, and some reports have suggested locations where it might reside.Advertisement The SWIM team decided to take a far more comprehensive approach, using data from multiple instruments to try to establish a degree of confidence in the presence of water. To do so, the team developed its own ice scoring system.That data comes from a number of instruments we've put in orbit above Mars. These include a neutron counter (neutrons scatter differently in ice than in rock) and two forms of radar that register the presence and depth of ice deposits. In addition, water tends to transmit heat poorly, so measurements of thermal flux can be indicative of its presence. Finally, by comparing them to glacial features on Earth, we can infer the presence of ice sheets from photographs of the terrain.The authors created a scale for each of these five measurements that ranged from -1 (ice extremely unlikely) to 1 (ice almost certainly present). They then averaged the five, creating an overall score for the possible presence of ice. This allowed some methods to compensate for the shortcomings of others. For example, neutron scattering is extremely sensitive but could be blocked by a layer of dust less than a half-meter thick. Radar is less sensitive but can pick up material much further below the surface.Given the researchers' averaging technique, having one decisive reading would create a score of 0.2 if all the others methods were ambiguous. A score of 0.5 would mean that at least three of the methods strongly indicated the likely presence of water.Go north, but not too far northThe first survey, reported here, has analyzed Mars' northern hemisphere, from the equator up to 60º in latitude. There's a small region along the east-west axis that's not included, but otherwise, the data includes most of the area where we might reasonably expect to land. Adding to the appeal, the area includes a lot of open plains with suitable terrain for dropping something out of orbit.Advertisement To an extent, the data is consistent with what we already had suspected. Modeling of temperature profiles had identified the northern areas within this region as likely to be able to support ice, and the readings go up as you move north. An examination of some of the regions that the mapping project identified show that impacts in the area tend to expose ice (all 13 of the ice-exposing impacts that the researcher looked at were within one pixel of an area scored as likely to contain ice). Finally, a few of the areas identified by the mapping correspond to regions where the geography had already been interpreted as indicating a glacial history.But the key finding is that some apparently ice-rich areas are further south than we'd have predicted based on temperature modeling alone. There were areas that scored above 0.5 at about 35º north of the martian equator, well into Mars' relatively temperate zones (for comparison, it's roughly where you'd find Morocco on Earth). One of the strongest signals is in an area called Arcadia Planitia, a very flat region covered by recent volcanic flows.The team will presumably move on to the southern hemisphere next. And that's going to be critical. While it's great that we have a potential site well into the mid-latitudes of Mars, any landings there are going to be focused on the scientific case for exploring the area. Having multiple promising sites will give us the chance to pick and choose based on something beyond water availability.Nature Astronomy, 2021. DOI: 10.1038/s41550-020-01290-z (About DOIs).


Read full article on Ars Technica


Leave a comment in Nestia App